

"stato della ricerca sulla sordità"

Sabato 24 maggio 2014

Prevenzione e riparazione del danno uditivo: cellule staminali e non solo

Dr.ssa Astolfi Laura

LABORATORIO DI BIOACUSTICA Campus Biomedico Pietro d'Abano, via G. Orus, 2b, 35128 Padova Prof. Alessandro MARTINI

Ad oggi

Impianti cocleari

Somministrazione di farmaci

Genetica diagnostica

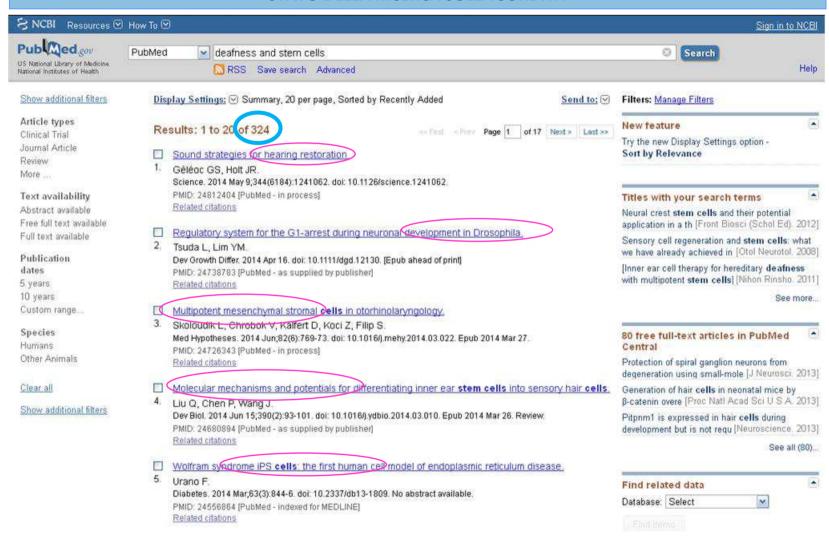
pratica clinica vs ricerca biomedica

Futuro:

Cellule staminali

Sviluppo di nuovi farmaci

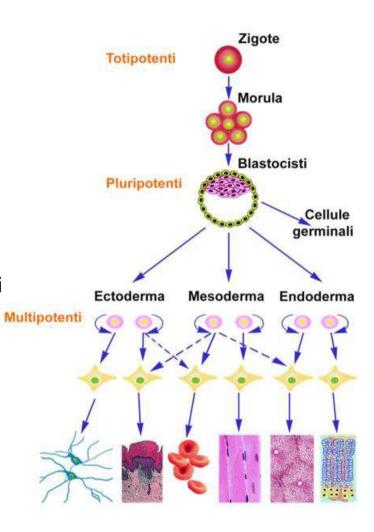
Nanotecnologie


Terapia genica

ricerca biomedica vs pratica clinica

CELLULE STAMINALI

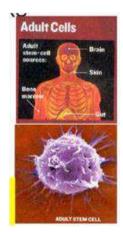
1. Embryonic stem cells,

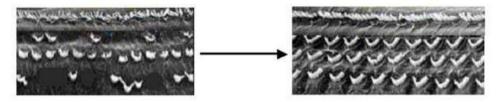

derivano dalle cellule germinative di embrioni di 4-5 gg

Iduced pluripotent stem cells,

tessuti cellulari che sono stati ingegnerizzati per regredire allo stato di cellula staminale

1. Adult stem cells,


derivano dai tessuti adulti



CELLULE STAMINALI

- Cellule staminali sono state identificate nell'organo vestibolare di ratto
- 2. E nel nervo cocleare di Guinea pigs e uomo

Possibili scenari per la rigenerazione dell'epitelio ciliato

1. trapiantare di cellule staminali nella coclea

2. "risvegliare" cellule staminali endogene, se presenti

3. transdifferenziare cellule di sostegno in ciliate

CELLULE STAMINALI

Cell Transplantation, Vol. 17, pp. 665–678, 2008 Printed in the USA. All rights reserved. Copyright © 2008 Cognizant Comm. Corp. 0963-6897/08 \$90.00 + .00 E-ISSN 1555-3892 www.cognizantcommunication.com

Cochlear Repair by Transplantation of Human Cord Blood CD133⁺ Cells to *Nod-Scid* Mice Made Deaf With Kanamycin and Noise

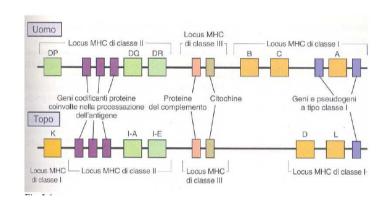
Roberto P. Revoltella,* Sandra Papini,* Alfredo Rosellini,* Monica Michelini,*
Valeria Franceschini,† Andrea Ciorba,‡ Lucia Bertolaso,‡ Sara Magosso,‡ Stavros Hatzopoulos,‡
Guiscardo Lorito,‡ Pietro Giordano,‡ Edi Simoni,‡ Emanuela Ognio,§ Michele Cilli,§ Riccardo Saccardi,¶
Serena Urbani,¶ Rosemary Jeffery,# Richard Poulsom,# and Alessandro Martini‡

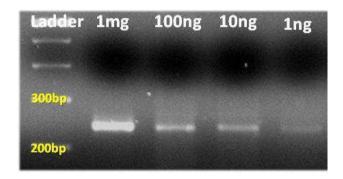
1) MODELLO ANIMALE: 70 topi NOD-SCID di 2 mesi di età (Charles Rivers, Laboratories Clinical, UK)

2) DANNO: RUMORE (105 dB SPL; 4 hrs)

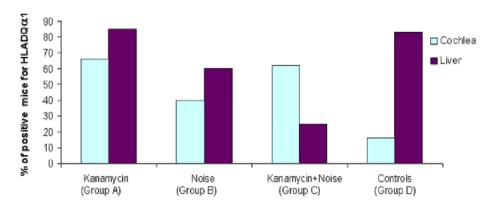
AMINIGLICOSIDI (Kamicina: 700 mg\kg\48 hrs x14gg)

3) SOMMINISTRAZIONE SISTEMICA (IV) DI CELLULE STAMINALI (HCBSCS)



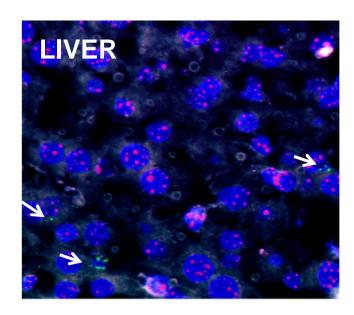

CELLULE STAMINALI

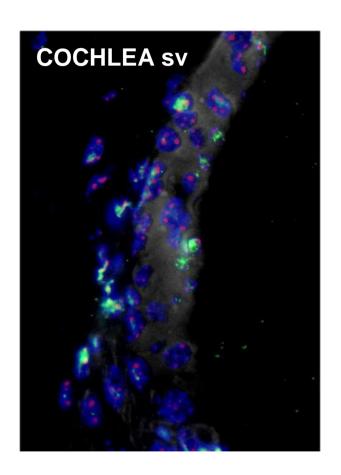
Analisi Molecolare (PCR): HLA-DQ


MHC di II° classe sono espressi in alcuni precursori mieloidi, in alta percentuale nei monociti/macrofagi, in cellule di langerhans della cute

Sensibilità della PCR HLA-DQa1:

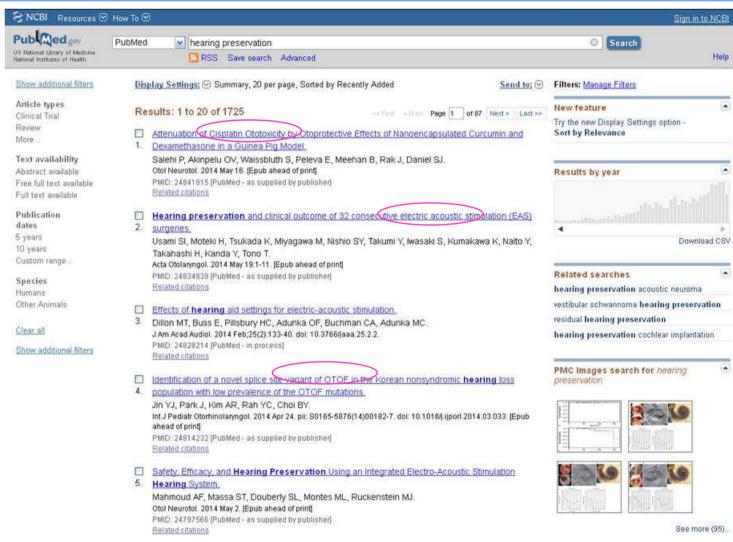
Analysis of the engraftment in Cochlea and Liver in different groups of mice



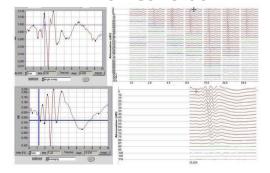


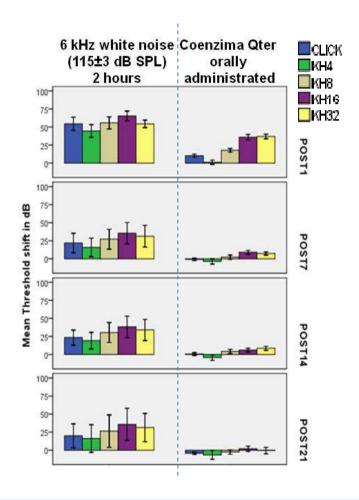
CELLULE STAMINALI HOMING E INTEGRAZIONE NEL TESSUTO

FISH (DUAL-COLOR)



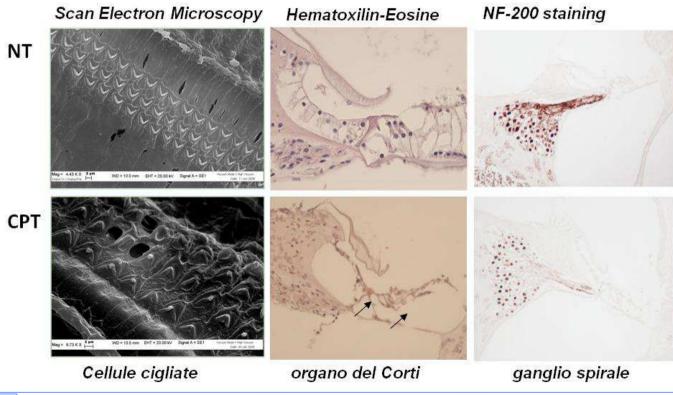
Centromeri murini Centromeri umani




PREVENZIONE DAL DANNO DA RUMORE

MODELLO ANIMALE: RATTO

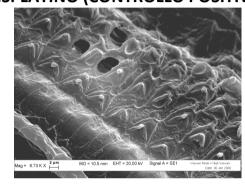
VERIFICA DELLA FUNZIONE UDITIVA:
ABR thresholds

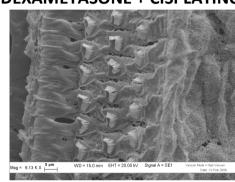


OTOTOSSICITÀ DEL CISPLATINO

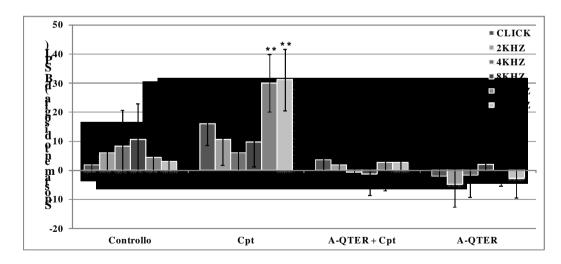
MODELLO ANIMALE: RATTO

TRATTAMENTO: IP 16 mg/kg




PREVENZIONE DAL DANNO OTOTOSSICO

CISPLATINO (CONTROLLO POSITIVO)

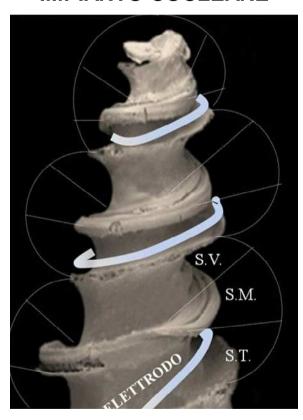

DEXAMETASONE + CISPLATINO

effetto PROTETTIVO
del DEXAMETASONE
nei confronti del
CISPLATINO

effetto PROTETTIVO
del Coenzima Q10
nei confronti del
CISPLATINO

COME APPLICARE I FARMACI

- **@ APPLICAZIONE DIRETTA**
- **@ CONIUGATI A NANOPARTICELLE**


via INTRA-TIMPANICA

via INTRA-COCLEARE

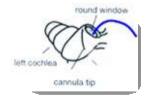
IMPIANTO COCLEARE

APPLICAZIONE DIRETTA e IMPIANTI COCLEARI

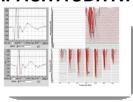
Progetto:

EVALUATION OF THE CAUSES OF COCHLEAR DAMAGE AFTER IMPLANTATION AND THE PROTECTIVE CAPACITY OF A DEXAMETHASONE-RELEASING ELECTRODE

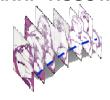
MODELLO ANIMALE


GUINEA PIGS

RILASCIO DEL FARMACO


HPLC-MS

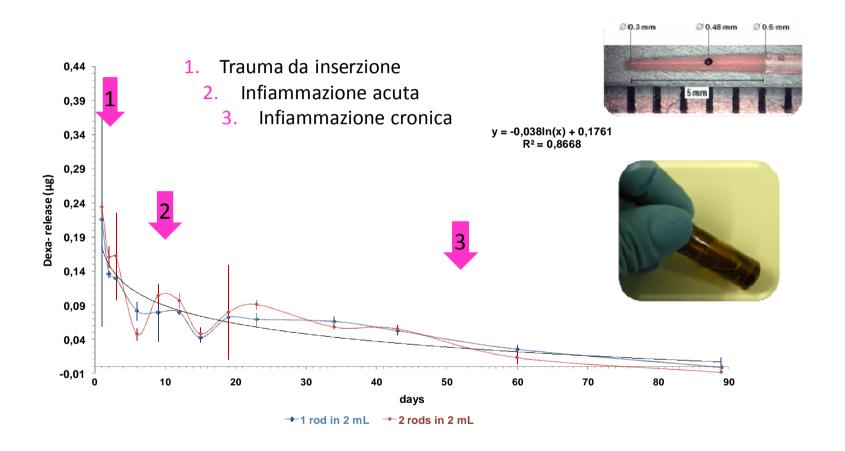
IMPIANTO BILATERALE


COCLEOSTOMIA

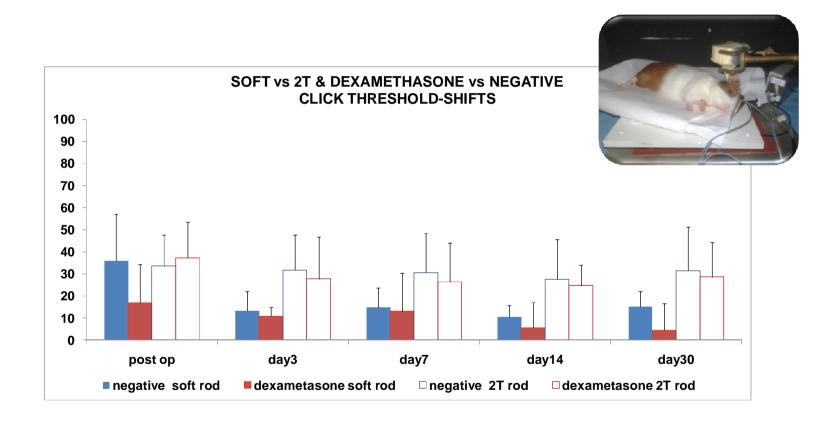
CAPACITÀ UDITIVA

Compound Action Potential

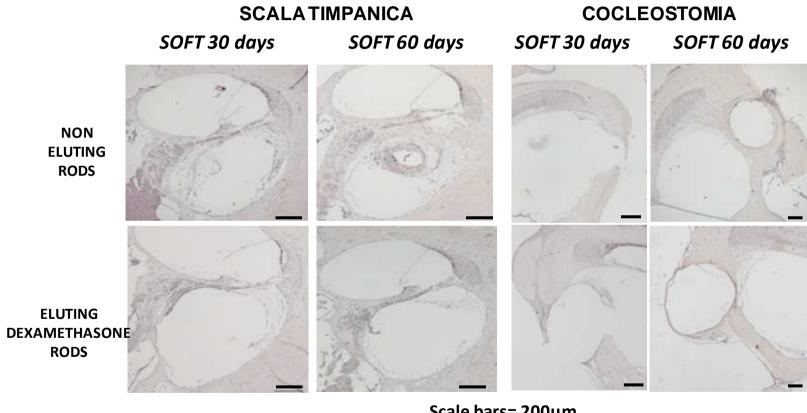
DANNI TISSUTALI

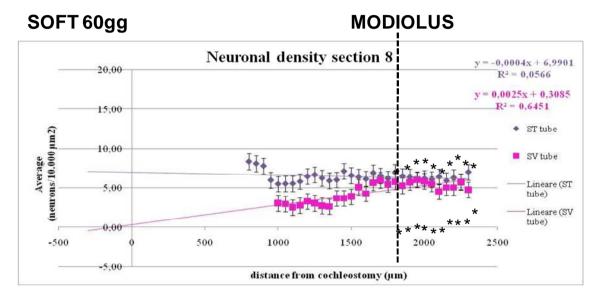


ISTOLOGIA

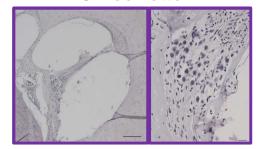

APPLICAZIONE DIRETTA e IMPIANTI COCLEARI

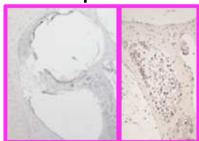
APPLICAZIONE DIRETTA e IMPIANTI COCLEARI




APPLICAZIONE DIRETTA e IMPIANTI COCLEARI

CRESCITA DI TESSUTO FIBROSO




APPLICAZIONE DIRETTA e IMPIANTI COCLEARI

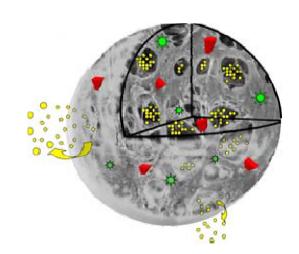
C.I. corretto

C.I. mal posizionato

FARMACI CONIUGATI A NANOPARTICELLE

A questo proposito siamo coinvolti in un progetto europeo, NanoEar,

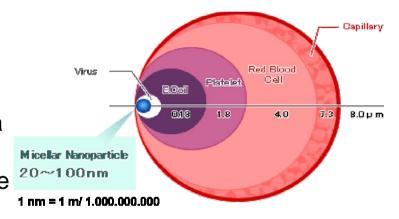
il quale prevede di testare più tipi di nanoparticelle incluse in dendrimeri, micelle o lipidi o complessi polimerici, per costruire un tipo di


NAOPARTICELLA MULTIFUNZIONALE

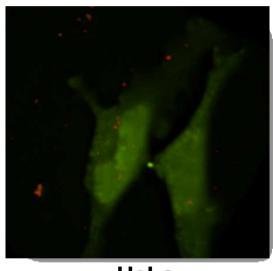
in grado di rilasciare molecole in tessuti specifici dell'orecchio interno

EU Research proposal: NMP-2004-3.4.1.5-1

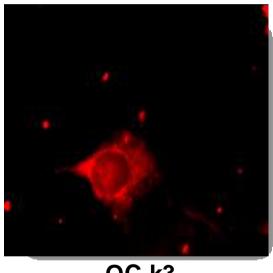
Nanotechnology-vectors for targeted drug and gene delivery



FARMACI CONIUGATI A NANOPARTICELLE


L'utilizzo delle NPs per la diffusione dei farmaci permette di avere

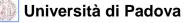
- Aumento della solubilità
- Aumento della biodisponibilità
- e risposta terapeutica più veloce
- diminuire le dosi da somministrare



FARMACI CONIUGATI A NANOPARTICELLE

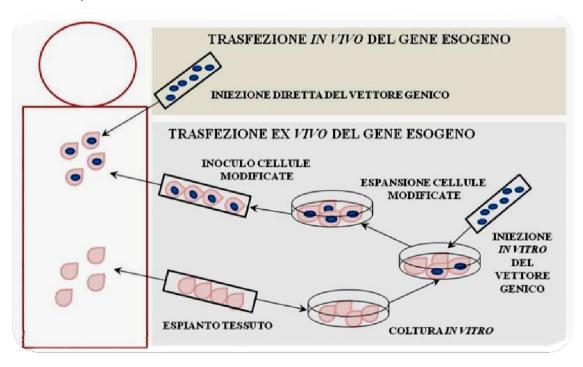
USO DI NPs COME DELIVERY SYSTEM

HeLa **EGFP/HBPL-Texas Red**



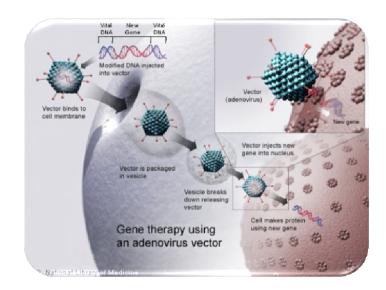
OC-k3 Qdot

Elisa Corbacella, Alessandro Martini e Ilmari Pyykko (2011). Il rilascio di farmaci nell'orecchio interno basato sulle Nanotecnologie In: Nano & Biotech in Audiologia e Otologia, a cura di A. Martini e G. Paludetti. ISBN 978 88 7241



Vettori di trasporto

- Virus (es. retrovirus, adenovirus)
- Liposomes
- siRNA
- Sistemi trasponibili



TERAPIA GENICA

VETTORI VIRALI

- Retrovirus
- Adenovirus
- Adeno-associated virus
- Herpesvirus
- Poxvirus

Vantaggi:

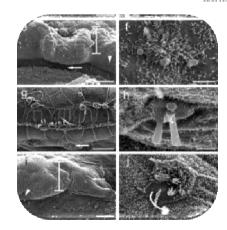
Integrazione stabile del gene

Svantaggi:

- Piccole dimensioni dei geni da trasferire
- Sicurezza
- mutagenesi
- Immunogenicità/potenziale infiammatorio

APPLICATA all'orecchio interno

Neuroscience Letters 207 (1996) 137-141.


Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo

Yehoash Raphael**, Juan C. Frisancho*, Blake J. Roesslerb

^aKresge Hearing Kesearch Institute, Wepartment of Ottolaryngology, 1150 W. Medical Center Drive, Ann Arbor, Mt 48109-4648, USA ^bDepartment of laternal Medicine. University of Michigan Medical School, MSRB III Room 9303, 1150 W. Medical Center Drive. Ann Arbor, MI 48109-0648, USA

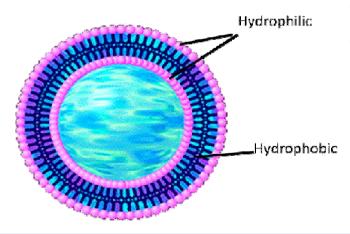
The Journal of Neuroscience, June 1, 2003 - 23(11):4395-4400 - 4395

Brief Communication

Math 1 Gene Transfer Generates New Cochlear Hair Cells in Mature Guinea Pigs In Vivo

Kohei Kawamoto, 1.2 Shin-Ichi Ishimoto, 1.3 Ryosei Minoda, 1.4 Douglas E. Brough, 2 and Yehoash Raghaell

Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, Michigan 48109-0648, 2Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, 570-8506, Japan, Department of Otolaryngology, Tokyo University, Bunkyo-ku, Tokyo, 113-8655, Japan, *Department of Otolaryngology-Head and Neck Surgery, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan, and GenVec Inc., Gaithersburg, Maryland 20878



VETTORI NON VIRALI

- Liposomes=lipoplexes
- Polycations=polyplexes
- siRNA

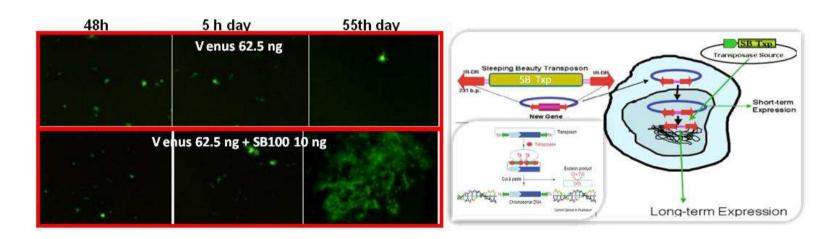
Liposomes=lipoplexes

VANTAGGI

- Disegno versatile
- Non-immunogenic e non-tossici
- Prodotti farmaceutici ben caratterizzati e rirpoducibili

SVANTAGGI

- No integrazione nel genoma ospite
- Possibili ripetizioni di somministrazione



IN VITRO efficienza di trasfezione

Modello in vitro hFASC stem cells

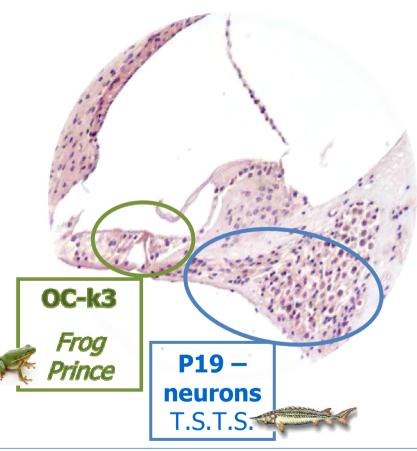
con Sleeping Beauty transposable system

Efficienza di co - Transfection in hearing fetal stem cells

Laura Astolfi, Valeria Guaran, Alessandro Martini (2011)

Terapia genica per l'orecchio interno: presente e futuro

In: Nano & Biotech in Audiologia e Otologia, a cura di A. Martini e G. Paludetti. ISBN 978 88 7241



FUTURE APPLICAZIONI

-con STEM CELL in protocolli ex-vivo verifica dell'integrazione verifica di dove e come agiscono

- Nuovi SISTEMI DI TERAPIA GENICA

no virus Integrazioni stabili differenti target cells

PROSPETTIVE FUTURE

Prof. Alessandro Martini

Dr. Elena Olivetto
Dr. Valeria Guaran
Dr. Pietro Giordano

Dr. Edi Simoni Dr. Giulia Orsini Dr. Filippo Valente

NAN O EAR

Dr Claude Jolly
Dr. Carolyn Garnham
Dr Nadia Giarbini
Dr. Jochen tTillein
Dr. Susanne Braun

Prof. Ilmari Pyykkö
Prof. Mamoun Muhammed
Dr. Andrea Fornara
Prof. Dr. Harm-Anton Klok

Dr. Andrea Ciorba
Dr. Silvano Prosser
Dr. Elisa Corbacella
Dr. Stavros Hatzoupoulos

GRAZIE PER L'ATTENZIONE

